Enhancing Quality Control & Transforming Industry 4.0 with AI & IoT

Muddasir Hassan, Data Scientist

wisd m 2020

Agenda

Industry 4.0

Current Challenges in automotive manufacturing

Predicting leakage failure in Engine Block

Data, Model building and Results

Al in Quality Assurance

How Anblicks is helping automobile industry leverage the power of AI for better Quality Checks

Anblicks

Who are we?

Fourth Industrial Revolution

Industry 4.0 factories have machines which are augmented with wireless connectivity and sensors, connected to a system that can visualize the entire production line and make decisions on its own

The Automotive Industry

Quality Checks Gone Wrong!

1.5M

1.4M

collision tests

Vehicles recalled by an American Brand between 97 – 2003 due to oil leakage issue

Cars were recalled by a Detroit

based automaker because it failed

9M

Faulty floor mats in Japanese brand of cars necessitated a huge recall

116 Workdays spent per site in Quality management

Al in Quality Assurance

Block Engine – The Heart of Vehicle

- 20% 25% of Engine Weight is constituted in this block
- Cost of Production: \$1500 \$5000
- Average Production: 300,000 units

- Functional Requirements: Water resistant, Pressure & Vibration tolerance, Withstand High temperatures and many more. . .
- Number of Quality Checks: ~30
- Vibration analysis, Combustion air control, Engine fluid tests, Multiple speed tests and many more. . .

Problem Statement

Predict the Engine leakage failure for the QA team to:

- Better utilize the resources in prioritizing the cohort of engines that are at risk of failure
- And remove those failed engine blocks from the production line

Data Flow and Solution Architecture

Predicting Leakage failure in engine block

- 106 Attributes
- Data Range of 1.5 years
- Target Label is a Minority Class
- Dimensionality Reduction to 75 attributes

Model Building

Algorithm

- Naïve Bayes
- Ensemble Random Forest + Naïve Bayes
- 1-class SVM

Validation Technique

Bootstrap validation

<section-header><text><text><text><text>

Objective: Reduce False positives and False Negatives

Data Preparation

Training Data

Months	Production Count	Failures	
Jan-18	6838	0	
Feb-18	4971	4	
Mar-18	6598	7	
Apr-18	8798	0	
May-18	7928	12	
Jun-18	5423	18	
Jul-18	3548	0	
Aug-18	9865	0	
Sep-18	6555	7	
Oct-18	9162	9	
Nov-18	8369	7	
Dec-18	7412	0	
Jan-19	7648	11	
Feb-19	3584	4	
Mar-19	4587	0	
Apr-19	3695	0	
Total	104981	79	

Test Data

Months	Production Count	Failu	ires
Jul-2	20	3007	6
Aug-2	20	3569	8
Sep-2	20	4375	8
Total		10951	22

Variable Names	
Metal Pressure	Insert Time
Intensification Time	Molten metal position
Vacuum Time	Pouring Die Temp
SprayTime	Push Pressure
Return Core time	End Fluid Pressure

Data Preparation

- High Class Imbalance
- Less explain-ability
- Less correlation with the target label

Sensor data

- Outlier Detection
- Linearity
- Pair-Wise correlation
- Univariate Analysis
- Chi-Square
- Principal Component Analysis
- SMOTE Up sampling
- Window Frame mapping

Model Building

Start with ideation, align with problem we are trying to solve and then proto type the solution

•	 Naïve Bayes Based on Bayes' Theorem of conditional Probabilities High number of features Less correlation with Target label 	0.32	F1 Score is the weighted average of Precision and Recall.
•	 Best assumption Ensemble - stacking & boosting Combination of two or more different models Random Forest + Adaboost Gradient Boosting Machines 	0.53	Used for uneven class distribution where False positives and False Negatives
•	 1-class SVM Learns only on one class which can be minority/majority class Overfitting one class 	0.73	

F1 Scores

RapidMiner to the Rescue!

Results

Performance metrics and the impact of all the numbers.

An Ounce of Prevention Is Worth a Pound of Cure

Anblicks Story: Practice Areas, Industries & Custom Products

Syed Muddasir Hassan Data Scientist Anblicks

https://www.linkedin.com/in/mu ddasirhsyed/

Thank you!

sales@anblicks.com

.